Frequency Controlled Secondary Heating Pumps

Intelligent engineering for future generations.

Logistics & Service

Features

Frequency Controlled Heating Pumps

ENERGY SAVINGS OPTIMIZED ENERGY EFFICIENCY FOR A POSITIVE BALANCE

- Eco upgrade package for saving energy and money
- Typical return of invest < 2 year
- Typical energy saving up to 30% 50%

Example Power and Cost Savings

Frequency Controlled Heating Pumps

- Availability of sufficient heat energy
- Constant pump rotation
 no adjustment to real necessary heat demand
- Very low temperature difference inlet return
 → high flow rate of heat transfer oil

High Energy Consumption \rightarrow High Potential for Savings Our Solution \rightarrow Frequency Controlled Heating Pumps Physical Context Frequency Controlled Heating Pumps ENERGY SAVINGS OPTIMIZED ENERGY EFFICIENCY FOR A POSITIVE BALANCE

 $P_{el} \sim (V)^3$ (electrical power depends on flow rate)

Reduction of flow rate by 20%

 $P_{el} \sim (0,8)^3 \sim 0.51$ \rightarrow (approx. 50% power saving possible)

Reduction of flow rate by 30%

 $P_{el} \sim (0,7)^3 \sim 0.34$ \rightarrow (approx. 65% power saving possible)

Example Power and Cost Savings

Frequency Controlled Heating Pumps

ENERGY SAVINGS OPTIMIZED ENERGY EFFICIENCY FOR A POSITIVE BALANCE

	HC 5	HC 4	HC 3	HC 2	HC 1	Σ
ΔT act	6.7° C	4.3° C	2.0° C	2.6° C	4.6° C	
P act	15.0 kW	18.8 kW	53.5 kW	171.8 kW	43.2 kW	302.4 kW
ΔT new	10.0° C	7.4° C	2.9° C	3.8° C	5.0° C	difference
P new	1.3 kW	2.6 kW	21.2 kW	53.5 kW	10.1 kW	88.7 kW

Result:

- = > approx. 200 kW potential for savings!!!!
- => approx. 130 T€ p.a. savings (9 ct. / kWh)

Existing Heating Circuit Overview

Frequency Controlled Heating Pumps

ENERGY SAVINGS OPTIMIZED ENERGY EFFICIENCY FOR A POSITIVE BALANCE

6

Heating Circuit Overview After Upgrade

Frequency Controlled Heating Pumps

ENERGY SAVINGS OPTIMIZED ENERGY EFFICIENCY FOR A POSITIVE BALANCE

Cabinet Overview

Frequency Controlled Heating Pumps

ENERGY SAVINGS OPTIMIZED ENERGY EFFICIENCY FOR A POSITIVE BALANCE

Benefits Frequency Controlled Heating Pumps

> Substantial savings of electrical energy (~ 30% to 50 % possible)

> Use of existing pumps and possibly of existing pump motors

> No long downtime for installation necessary (2-5 days)

For more information on electrical modernizations, please scan the QR code

Intelligent engineering for future generations.

